
Pla$orm Physics game by PullJosh on Scratch

Step 1

Start by crea*ng a y velocity variable in the player
sprite. This keeps track of how fast the Player
sprite is going the the y direc*on.

Then create a pla$orm physics block which is
inside the game loop doing all the stuff with
veloci*es. Make sure you check “run without
screen refresh” or it will run too slowly.

Add the blocks on the right to the script of your
Player sprite. Because we increase y velocity each
*me we run the pla$orm physics block it looks like
our sprite is speeding up as it falls, which makes it
look more realis*c

When you run this code you’ll see that the sprite falls
but there’s a problem: it falls through the ground.

Step 2

So that the player doesn’t fall through the floor, change
the define pla$orm physics script to this:

This is a bit beHer - it doesn’t fall so far through the
floor, but it’s s*ll not great

1

We really need to move the sprite back up a bit if it’s
fallen through the ground, so add an extra if block
like this:

This brings the player back up onto the ground if it’s
sunk through it, but it does it quite slowly which
looks weird.

This is because each *me we move it up by 1 it’s
going through all the other steps in the pla$orm
physics script as well. We really just want to fix it all
at once inside pla$orm physics.

Step 3

To do this we need to add a repeat block round our second if touching ground
block, but how many *mes do we need to repeat?

We know that the last amount we changed y by before it reached the ground (or
ended up in the ground) was y velocity. So the most we need to move it to get it out
of the ground is y velocity in the other direc*on (though it might not be as much as
that).

Remember that y velocity is a nega*ve value because our sprite is moving down the
way. We can’t repeat something a nega*ve number of *mes, so we repeat it abs of
y velocity *mes, where abs of means the “absolute value” of y velocity.

The absolute value of a number is just the number itself, without any nega*ve signs,
so the absolute value of 3 is 3 and the absolute value of -3 is also 3.

2

C

Step 4

To allow the sprite to jump when the player
presses the up arrow key add these blocks just
below set y velocity to 0 but s*ll inside the if
touching ground block.

This means you can only jump if you’re star*ng
from the ground (no double-jumping

3

If our sprite is touching the ground
it may be just touching it or partly
inside the ground.

Keep checking to see if the sprite is
touching the ground and if it is, move
it up one pixel. Repeat this for the
absolute value of y velocity times.

Step 5

Next, we want to put in the
ability to move the player leV
or right, using the arrow keys.
To help us do this we need to
make another variable that
will store the player’s speed
moving across the screen,
that is, in the x direc*on.

Call this new variable x
velocity.

Now add these blocks, joining
them onto the boHom of the
ones already in the plaXorm
physics script:

Step 6

The sprite is now going leV and right when
arrow keys are pressed, but it’s also driVing
through walls.

To stop this and also make sure it doesn’t get
stuck partly inside a wall (as it did earlier in
the ground) we need to add this to the code
just under the change x by x velocity block:

When we were extrac*ng the block from the
ground aVer falling, we knew we wanted to
change y by 1, to make it move up a bit.

This *me, if the sprite is moving leV - i.e. x
velocity was nega*ve - we want to change x
by 1. But if the sprite is moving right - ie. x
velocity is posi*ve - we want to change x by

4

-1.

Step 7

Finally, if the sprite has hit a wall it
should stop trying to move in that
direc*on. So add a block to set x
velocity to 0 right aVer the repeat block:

We should also set x velocity to 0 at the
start of the game by adding this block
here:

Step 8 - add fricGon

If we move our sprite right, up the stairs and onto the slope you’ll see it just keeps
going un*l it hits the right-hand wall. It might be that in your game you want the
slope to be really slippy like that but, if you want it to be more like an ordinary bit of
ground, you’ll need to add fricGon to the physics.

We saw earlier that the y velocity of the sprite keeps increasing as it falls, as we add
-1 to it each *me the plaXorm physics block is run. Adding fric*on will slow our

5

sprite down gradually by making x velocity
a bit smaller each *me the plaXorm
physics block runs.

To do this, at the very boHom of the
pla$orm physics defini*on, we set x
velocity to (x velocity mul*plied by a
number between 0 and 1).

Step 9 - stop jumping through ceiling

We’ve almost fixed all our issues with walls/floors that the sprite can move through,
but it’s s*ll able to jump up through a plaXorm above it. To fix this we just need to
adjust the code we have to get the sprite out of the ground slightly and make it more
like the code to get the sprite out of walls.

If we go back up to the top of the plaXorm
physics defini*on, we want to replace the if
block that says

With this version that checks whether the
sprite is moving up (y velocity > 0) or down
(y velocity < 0) and changes y accordingly.

6

Try this out - there may sGll be a problem!

Step 10 - stop jumping through ceiling - the fix

So if you tried that, you’ll see that it didn’t seem to work! But don’t worry - you
don’t need to throw your new sec*on of code away. We just need to slightly
rearrange our code and change one of our if
blocks for an if then else block.

First of all, detach the sec*on of code that
starts with the if key right arrow pressed
block. Now take the top sec*on and split it
into two sec*ons. First these ones:

Then everything that was inside that if
touching ground block:

7

At the moment, every *me the pla$orm physics block runs we start by changing y
velocity by -1. If we add a wait 0.5 seconds block aVer the change y by -1 block and
set y velocity to show on the screen we can see what’s happening. When our sprite
hits the ceiling, the y velocity is -1. This means that, when we go into the “get us out
of the floor or ceiling” loop Scratch changes y by 1, moving us up rather than down.

To fix this, we need to make sure we only change y velocity by -1 if we’re not
touching the ground at that point. This makes sense as a falling object keeps ge]ng
faster as it fall s - its y velocity becomes a larger nega*ve number - but it doesn’t 8
keep ge]ng faster once it’s hit the ground. That would be weird.

So, in the first sec*on of code, change the if
touching ground block to an if touching ground
then-else block, and move the change y velocity
by -1 to be inside the else branch of the block

Now put the second block of code in Step 10
(i.e. everything that was inside the original if
touching ground block into the if branch of this
block. Finally, reaHach the sec*on of code that
deals with the sprite moving leV and right to
the boHom of this if then else block.

Step 10 - Stop gePng stuck on the ceiling

The player can do this because, at the moment if they hit ground aVer we update
the sprite’s y value we assume they fell onto it and so they’re allowed to jump. If the
bit of ground they hit is actually a ceiling and they jumped onto it s*ll let them jump.
They can’t now go through it like they did before but they can s*ll keep jumping to
let them s*ck there.

To fix this we need to add some code that works out we’re touching the current bit
of ground because we fell or because we jumped. We do this by adding an extra

8

check into the condi*on on the if block that checks to see if the up arrow key was
pressed. We want to make sure the player can only jump if they’ve just fallen onto

the

ground - so if their y velocity is nega*ve, or less than zero.

But if we try this out you’ll see it hasn’t fixed the problem - if we always set y
velocity to 0 before doing this check it will always be true and we’ll always be able to
jump. If we try to fix it by se]ng y to 0 immediately aVer we set it to 12 it’s more of
less the same as not se]ng it to 12 and we can’t jump at all.

The answer is to change our if block for an if then else block where if the player is on
the boHom of the ground sprite we set y velocity to 12. If their y velocity is greater
than 0 - i.e. they’re already jumping - we set it to 0.

9

Step 11 - Stop gePng stuck going up slopes

To stop the player sprite ge]ng stuck moving up a slope we’re going to see if the
player sprite is touching ground aVer upda*ng its x posi*on. If it is, we’re going to
assume it’s on a slope and for every amount along we just moved it, we’re going to
move it the same distance up. Since we just moved it by x velocity which is 3, we’ll
need to move it up 3 as well.

To do this, add these blocks to
the top of the if touching
ground block just under the
change x by x velocity block.

The reason we’ve created a
new variable called old y and
set it to y posiGon before we
start doing this “get us up the
slope” code is because we
might not be on a slope. F

If that’s the case, we’ll need
to set our y posi*on back to
where it was before we tried

10

our slope-escape.

The blocks you just added are followed
by the “greyed out” blocks on the right
here, which is the code we added in Step
6 to get the Player out of walls.

If the if touching ground block at the top
here returns True aVer we’ve tried to get
out of the slope we can assume the
Player is not in a wall.

If that’s the case, it must be touching a
wall and we should set our player’s y
posiGon back to where it was before we
started ge]ng it out of a slope that
wasn’t actually there.

So add this set y to old y block.

Step 12 - Ability to wall jump - ie. bounce off walls

At the moment, aVer we’ve checked for going up a slope, if we decide the player has
hit a wall, we set the x velocity to 0 so that they stop moving towards that wall (see
the code at the end of Step 11. However, to allow us to “wall jump”, I.e. s*ck to a
wall and bounce up and off it, we want to check aVer doing that to see if the up
arrow key is being pressed.

We also want to see which way they’re going -i.e. is x velocity < 0 (moving leV) or is
x velocity > 0 (moving right)? We want people to wall-jump only if they’re trying to
jump while pushing into the wall they’re next to.

11

Put together these blocks but
don’t connect them to the main
plaXorm physics code just yet.

Here we check to see if the up
arrow key is pressed. If it is, we
check to see what direc*on the
player is moving in.

If they’re moving leS and are
pressing the leS arrow key to push
into the wall, we set the x and y
velocity so that they move up and
to the right, jumping off the wall.

If they’re moving right and
pressing right arrow, we move
them up and to the leV.

You might have spoHed that we have a slight problem: if we put this block of code
aVer the block set x velocity to 0 we won’t jump at all because we’re not moving leV
or right. If we put it before set x velocity to 0 we’ll jump but only straight up
because that immediately undoes se]ng x velocity to 8 or -8.

12

The answer is to modify our sec*on of
code so that we set x velocity to 0 aVer
we’ve checked for the player going leV
or going right, but before we see if the
player wants to wall jump, like this:

One that’s done, replace the set x velocity to 0 block near the boHom of the main
plaXorm physics code with this new larger block and you should be able to wall-
jump.

Step 13 - Make the player sprite detect slopes and adjust its angle

At the moment the Player sprite goes up and down
the slope with only one corner touching it - the
sprite is horizontal, but the ground under it isn’t.

First, we need to add a layer of a different colour to
all the surfaces of the ground sprite that the player
sprite could land on due to gravity pulling it down.
In this example we’ve gone for neon yellow, but you

13

should choose whatever colour you like - it can even be fairly similar to the ground
sprite’s main colour in order to be less no*ceable.

To get the sprite to spot when it doesn’t have its whole
base on the ground we need to add a couple of coloured
“sensors” to the boHom of the sprite.

You can see here that we’ve added a black rectangle to
the boHom leV corner of the sprite, and and white
rectangle to the boHom right corner. These have to be
completely covering the main colour of the sprite - with no edges of purple round
them.

We can use these as “sensors” by using Scratch’s color is touching block.

If we want to know if the boUom right
corner of the sprite is touching the
ground we can use this block:

If we want to know if the boUom leS
corner of the sprite is touching the
ground we can use this block:

We need to do this because we want to know if one of the corners of the sprite isn’t
on the surface, but Scratch only keeps track of the posi*on of the centre of each
sprite.

Ideally, if we no*ce one corner isn’t touching the ground we could keep lowering
that corner un*l it meets the ground by turning 1 degree at a *me. However, in our
plaXorm world with gravity this tends to go a bit haywire because the sprite is
actually constantly being pulled into the ground, then pulled out.

14

To get round this we’ll use the less elegant, but easier
method of crea*ng an extra costume where the sprite is
angled to lie flat against the surface of our slope.

This isn’t a general solu*on because if we make more levels
with different angles or direc*ons of slope we’d need to
create different costumes for them and possibly add a bit more code.

To keep our code a bit *dier, lets make a new block called slope adjust where we’ll
check to see what costume we need to use:

The first if then block checks to see if the boHom leV corner (black sensor) is
touching but the boHom right (white sensor) isn’t. If that’s true, we’re in the
situa*on in the first picture in this sec*on and we need to switch to the sloping
costume.

If we’re in the sloping costume and go back to a flat area, the player sprite will have
its white sensor touching ground but not the black one. This is the situa*on the
second if then block checks for, switching costume to the one for level surfaces if
that’s true.

15

Now add the slope adjust block to the
code of plaXorm physics here, just inside
the first if touching ground block.

Step 14 - Clean up - make the code easier to use and read

16

